Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740893

RESUMO

In adults, glucocorticoids are stress hormones that act, partly, through actions on mitochondrial oxidative phosphorylation (OXPHOS) to increase energy availability. Before birth, glucocorticoids are primarily maturational signals that prepare the fetus for new postnatal challenges. However, the role of the normal prepartum glucocorticoid rise in preparing mitochondria for the increased postnatal energy demands remains largely unknown. This study examined the effect of physiological increases in the fetal cortisol concentration on cerebral mitochondrial OXPHOS capacity near term (~130 days gestation, term ~145 days gestation). Fetal sheep were infused with saline or cortisol for 5 days at ~0.8 of gestation before the mitochondrial content, respiratory rates, abundance of the electron transfer system proteins and OXPHOS efficiency were measured in their cortex and cerebellum. Cerebral morphology was assessed by immunohistochemistry and stereology. Cortisol treatment increased the mitochondrial content, while decreasing Complex I-linked respiration in the cerebellum. There was no effect on the cortical mitochondrial OXPHOS capacity. Cortisol infusion had regional effects on cerebral morphology, with increased myelination in the cerebrum. The findings demonstrate the importance of cortisol in regulating the cerebral mitochondrial OXPHOS capacity prenatally and have implications for infants born preterm or after glucocorticoid overexposure due to pregnancy complications or clinical treatment.


Assuntos
Glucocorticoides , Hidrocortisona , Animais , Encéfalo/metabolismo , Feminino , Feto/metabolismo , Idade Gestacional , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Hidrocortisona/farmacologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Gravidez , Ovinos
2.
FASEB J ; 35(5): e21591, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891344

RESUMO

Thyroid hormones regulate adult metabolism partly through actions on mitochondrial oxidative phosphorylation (OXPHOS). They also affect neurological development of the brain, but their role in cerebral OXPHOS before birth remains largely unknown, despite the increase in cerebral energy demand during the neonatal period. Thus, this study examined prepartum development of cerebral OXPHOS in hypothyroid fetal sheep. Using respirometry, Complex I (CI), Complex II (CII), and combined CI&CII OXPHOS capacity were measured in the fetal cerebellum and cortex at 128 and 142 days of gestational age (dGA) after surgical thyroidectomy or sham operation at 105 dGA (term ~145 dGA). Mitochondrial electron transfer system (ETS) complexes, mRNA transcripts related to mitochondrial biogenesis and ATP production, and mitochondrial density were quantified using molecular techniques. Cerebral morphology was assessed by immunohistochemistry and stereology. In the cortex, hypothyroidism reduced CI-linked respiration and CI abundance at 128 dGA and 142 dGA, respectively, and caused upregulation of PGC1α (regulator of mitochondrial biogenesis) and thyroid hormone receptor ß at 128 dGA and 142 dGA, respectively. In contrast, in the cerebellum, hypothyroidism reduced CI&II- and CII-linked respiration at 128 dGA, with no significant effect on the ETS complexes. In addition, cerebellar glucocorticoid hormone receptor and adenine nucleotide translocase (ANT1) were downregulated at 128 dGA and 142 dGA, respectively. These alterations in mitochondrial function were accompanied by reduced myelination. The findings demonstrate the importance of thyroid hormones in the prepartum maturation of cerebral mitochondria and have implications for the etiology and treatment of the neurodevelopmental abnormalities associated with human prematurity and congenital hypothyroidism.


Assuntos
Regulação da Expressão Gênica , Hipotireoidismo/complicações , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Fosforilação Oxidativa , Efeitos Tardios da Exposição Pré-Natal/patologia , Hormônios Tireóideos/deficiência , Animais , Circulação Cerebrovascular , Feminino , Mitocôndrias/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Gravidez , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...